

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
2/5/02

CY4611 – FX2 USB to ATA Reference Design Notes

Note
Cypress offers several mass storage reference
designs. This document describes the CY4611
software, which runs only on the EZ-USB FX2
(CY7C68013). See the Cypress website for
information on other designs.

Introduction
Cypress has two USB 2.0 High Speed Mass Storage
solutions. The ISD-300 is a fixed function Mass
Storage solution for ATA devices. The EZ-USB FX2
is a flexible bridge solution that enables additional
features to be added to a USB 2.0 bridge device. It
has a downloadable memory interface to incorporate
last minute specification changes, and it supports the
full USB 2.0 throughput (480Mbits/sec). Since not all
mass storage devices have exactly the same
interface, Cypress has developed a flexible
reference design compliant with the USB mass
storage specification, so that mass storage
customers can quickly test and adapt the design to
their individual requirements. The Cypress EZ-USB
FX2 Mass Storage reference design demonstrates
how to connect the EZ-USB FX2 to the following
device types:

• IDE devices
� hard disk drives

• ATAPI devices
� ZIP drives
� CD-ROM/R/RW drives
� DVD-ROM/RAM/RW drives
� Other ATAPI devices

Reference Design Elements
• FX2 Mass Storage Reference Design PCBA
• Reference Design Schematic in both PDF

and OrCAD source files
• Reference Design BOM
• Firmware source and object code
• Reference Design Notes (this document)
• UDMA White Paper
• Operating Instructions
• Release Notes
• Errata

Background Information
This document assumes the reader to be familiar
with the USB Mass Storage Class specification and
general operation of the Cypress’ EZ-USB FX2. For
more information please refer to these specifications
or Cypress’s EZ-USB FX2 Technical Reference
Manual.

Mass Storage Class Specification
The USB Mass Storage Class specification contains
two subclasses, the CBI (Command, Bulk, Interrupt),
and the newer Bulk Only Transport. This reference
design complies with the Bulk Only subclass of the
USB Mass Storage Specification. The Bulk Only
subclass is supported by the Windows XP, 2000 and
Me drivers as well as MacOS 9 and X.

Boot Support
The current level of boot functionality will allow you to
boot to DOS or Win9x Safe Mode from a Hard Drive
or CDROM. You cannot currently boot to Windows
due to issues with the way Windows attempts to
access a boot drive directly. Boot functionality has
been tested with both Phoenix and AMI BIOS.

48 bit LBA Addressing
The proposed ATA-6 spec contains support for large
drives with 48 bit Logical Block Addresses (LBAs).
Version 2.10 of the CY4611 adds support for this
specification. However, the SCSI commands
passed by the Mass Storage Class Specification only
support 32 bit LBAs, which limits support to 2^41
(2Tera) bytes on a 512 byte sectored device.

Firmware Overview
Note: CBW, CSW, dataTransferLength, and
“Persistent Stall” are defined in the “USB Mass
Storage Class, Bulk Only Transport” document
referenced below.

The firmware for the device is a straightforward
implementation of a USB Bulk Only Mass Storage
Device. After reset, it waits for a CBW packet,
checks it and then executes the data phase of the
command (if any). Once the data phase is complete,
the firmware sends a CSW packet to the host. The
only commands that the firmware generates on its

EZ-USB FX2 USB to ATA Reference Design Notes

2

own are SCSI Identify Device (to get the device
name) and ATA Identify Device (to get the device
serial number).

The current FX2 firmware supports both high speed
(480Mbps) and full speed (12Mbps) devices. IDE
and ATAPI devices are supported by a single
firmware image.

Firmware Details

Main()
Upon reset, the firmware begins execution at main().
This routine checks to see if this is a hard or soft
reset. Soft resets do not trigger a
disconnect/reconnect sequence, while hard resets
do.

 resetATAPIDevice()
On a hard reset, TD_init() is called, which initializes
the hardware using initUSB() and initPorts(). The
firmware will then attempt to reset the drive and
determine its command set by calling
resetATAPIDevice(). If no drive is detected, the
firmware will continue pulsing the ATA reset line until
one is detected. Once a drive is detected, the
firmware determines whether it is an IDE or ATAPI
device by reading the byte count registers. The scsi
flag is set to 1 to indicate an ATAPI device, scsi is
set to 0 on an IDE device.

 ATAPIIdDevice()
This routine is called to collect information from the
drive into internal data structures. This information
includes the max PIO speed supported and the
serial number of the drive. If the device supports
PIO-3, PIO-4 or UDMA, this routine will program the
drive to run at the new speed. The serial number
must be read before the device connects to USB,
since it is one of the descriptors read during USB
enumeration.

EZUSB_Discon()
Once the serial number is read, EZUSB_Discon is
called to connect to USB (the default condition of
“disconnected” is set at reset). EZUSB_Discon() may
be called repeatedly if the host doesn’t send a
SETUP after the device has connected. Once the
device is connected, the main while() loop of TD_Poll
starts.

Hardware
Reset of FX2

Initialize Hardware

[TD_Init, initUSB]

Initalize ATA Device
Detect ATAPI vs IDE
Disconnect if needed
[resetATAPIDevice]

W ait for CBW
[TD_Poll()]

SCSI device?
[processCBW]

No

Translate ATAPI to IDE
command

generalIDEInComm and
generalIDEOutComm and

Send com mand to
device

[sendSCSICom mand]

Yes

data
TransferLen >

0

Transfer data via
PIO or UDMA

[Read/W ritePIO16
Read/W riteUDMA()]

Yes

No

Send CSW
[sendUSBS()]

Send com mand to
device

[ideReadCom mand
ideW riteComm and]

USB Reset in
any state

EZ-USB FX2 USB to ATA Reference Design Notes

3

TD_Poll()
As in all Cypress Frameworks based code, the main
code loop is called TD_Poll(). This routine is called
repeatedly until it detects a packet in the OUT buffer.
TD_poll() checks the received packet for a valid
CBW signature. If one is found, it calls
processCBW(). If the packet is not a valid CBW, the
device enters a “persistent stall” condition awaiting a
device reset. ProcessCBW() calls
generalIDEInCommand() or
generalIDEOutCommand() depending on the
direction flag in the CBW. If the dataTransferLength
is non-zero, the readPIO16() or writePIO16()
routines are called to pass data directly from the
USB buffers to the drive using the GPIF.

SETUP messages are handled in an ISR, so they
may be received and responded to at any time. The
entire SETUP message will be handled within the
ISR, therefore long SETUP traffic will adversely
affect disk performance. This is not expected to be
an issue since Windows does not use SETUP

packets after enumeration except to clear STALL
conditions.

ReadPIO16(), WritePIO16()
These data transfer routines activate the GPIF to
move data to/from the FIFO memory to/from the
ATA bus. The data is read from the drive to the EP8
buffer. Write data moves from the host through the
EP2 buffer.

Resets
The firmware performs a hard reset of the drive on a
USB Reset condition. The firmware performs a soft
reset of the 8051 on a USB Reset condition

File Descriptions
The FX2 firmware is stored in its own directory. All
of the FX2 firmware is contained in the FX2 software
directory on the CD.

The purpose of the source files in the software
directory is shown in the following table:

Filename Purpose
Dscr.a51 Descriptor table containing product/vendor ID, endpoint descriptions and other information

reported to the host on startup.
reset.a51 Assembly routine used to branch to 0 on USB reset.
Startup.a51 Modified Keil startup file that does not initialize any variables.
USBJmpTb.a51 INT2/INT4 vector table. Used by all images.
iic_ata.bat Batch file used to create the EEPROM image.
atareset.c Contains hard reset routine, selection of IDE vs ATAPI protocol. Identifies device

characteristics, including serial number, capacity and transfer rate. Selects transfer rate
by loading new GPIF waveforms.

fw.c Frameworks based main routine. This fw.c has major differences from the fw.c released
with the dev kit, since several implementation-specific functions have been merged with
the general startup code in this file.

gpif.c EZ-USB FX2 low level i/o routines. Waveform descriptors. Routines for loading the GPIF
memory with the waveform descriptors.

gpifpio0.c Output file from the GPIF tool. The GPIF table from this file is manually inserted into the
gpif.c file.

gpifpio4.c Output file from the GPIF tool. The GPIF table from this file is manually inserted into the
gpif.c file.

ide.c Translates SCSI (ATAPI) commands sent by the host driver into IDE commands.
periph.c TD_Init and TD_Poll(), misc init routines, misc util routines including our smaller version of

memmove.
scsi.c High level data transfer routines for ATAPI devices. (Named SCSI.c because ATAPI

devices use the SCSI command set.) Calls low level transfer routines in gpif.c.
atapi.h Header file containing application specific items.
gpif.h Header file containing hardware specific items.
scsi.h SCSI command set
fx2_ata Debuggable object code image
fx2_ata.hex Output image (Intel hex format)
fx2_ata.iic Output image (binary image, ready to be loaded into an EEPROM)

EZ-USB FX2 USB to ATA Reference Design Notes

4

Filename Purpose
fx2_ata.M51 Map file
fx2_ata.Opt Options for UV2 project
fx2_ata.Uv2 UV2 project file

Building the Software
Since the software is distributed on a CD, many
operating systems will set the read-only flag when
copying the data to your local directory. This flag
must be turned off before uVision2 will properly build
the .hex file. To do this, use “attrib –r *.*” at the DOS
command line or select all of the files in Explorer,
select “properties” and turn off the “read-only”
checkbox in the “general” tab.

This Reference Design has only been tested with the
release of the Dev Kit contained on the release CD.
Please install the current Dev Kit before building.

The Mass Storage design will NOT compile with
the 4K demo version of the Keil tools.

Once the files are no longer read-only, start the full
uVision2 environment (available separately from
www.keil.com) and click the “build all” button. This
will generate an image that can be loaded with the
control panel or the debugger. Use the debugger
with caution. Once the OS has detected this device
as a Mass Storage device, bad or missed responses
from the device (breakpoints) will result in a USB
Reset in the best case, and a total OS lockup in the
worst case.

The code image is currently about 0x1F00 bytes
code / 0x240 xdata. The FX2 has 0x2200 (8.5k) of
internal code/xdata memory.

Debugging the Software
The CY4611 software will run with the Keil debugger
on a CY3681 development board. This is a useful
environment for debugging startup issues by single
stepping the firmware.

Debugging specific commands requires a different
approach because the Mass Storage driver will
timeout while you are single-stepping and may lock
up or reboot the host machine. The CY4611
firmware can be bound to the Cypress General
Purpose Driver by modifying the descriptors in
dscr.a51 as follows:

Old
70 dw 1146H ;; Product ID (4611)
104 db 08H ;; IF class -- Mass

Storage
New
70 dw 0210h ;; PID = Sample dev
104; db 0ffh ;; Class -- NOT Mass

Storage -- use for testing

Once the firmware is bound to the General Purpose
Driver, commands can be sent to the device using
the control panel. An easy way to do this is to
construct a file containing the command and use the
FileTrans button to send it.

1) Start the Keil debugger, download your firmware.
2) Run the firmware, it will enumerate and bind to

the general purpose driver
3) Start the control panel.
4) Do a “get pipes” on the control panel. This will

fill in the pipe fields.
5) Select the OUT pipe and hit the FileTrans

button.
6) Select your command file.
7) Manually transfer the IN or OUT data required by

the command
8) Do a final IN to collect the CSW.

Difference between ATAPI and IDE
devices
Although both ATAPI and IDE devices attach to the
same 40 pin cable, they operate using different
protocols, much like TCP/IP and NetBEUI share the
same Ethernet wire, but cannot talk to each other.
ATAPI commands are basically SCSI commands
sent over an ATA interface.

This firmware will support both ATAPI and IDE task
file commands. It will detect the type of device after
reset. If the device is an IDE device, the ATAPI
commands received over USB will be translated into
IDE task file commands. One way to gain additional
code space is to eliminate one of the supported
protocols.

http://www.keil.com/

EZ-USB FX2 USB to ATA Reference Design Notes

5

Serial numbers
The USB Mass Storage specification requires that
each device has a unique serial number. The board
manufacturer will have to initialize this serial number
during the manufacturing process. This reference
design initializes the serial number string to the
drive’s serial number, which is frequently not
compliant with the spec requirment that the serial
number string be hex digits (0-9 A-F). In some
cases, this serial number may not even be unique in
the range selected by the firmware.

Hardware Notes – EZ-USB FX2 design
The FX2 design takes advantage of its internal GPIF
(General Programmable InterFace) to move data
from the endpoint buffers to the mass storage
device. For more details on the EZ-USB FX2 and
GPIF, see the EZ-USB FX2 Technical Reference
Manual and the UDMA white paper on this CD.

The GPIF is used to create several different PIO
waveforms. There are two waveforms for word (16
bit) data transfers, one for read and one for write.
These waveforms transfer data between the FIFOs
and the drive. They generally operate on full 512 byte
packets. There are also two waveforms for byte (8
bit) GPIF waveforms, one for read and one for write.
These waveforms are used for register reading and
writing.

The firmware initially uses PIO mode 0 to identify the
device. The firmware uses this data to determine
the maximum transfer speed (PIO or UDMA mode).
After the mode is selected, a new set of GPIF
waveforms is loaded into the GPIF waveform
memory to increase the read/write waveform speed.

The gpifpio0.c and gpifpio4.c files can be loaded into
the GPIF tool to modify or examine the PIO
waveforms that are used in this design.

Power
The reference design can be powered from the USB
bus for convenience (with JP2 inserted), but the only
configuration that is compliant with the USB spec is
to power both the USB interface and the drive
electronics from an external supply with JP2
removed.

References
USB Mass Storage Class – Bulk Only Transport,

USB Mass Storage DWG. (www.usb.org)
USB Mass Storage Class – Overview Specification,

USB Mass Storage DWG. (www.usb.org)
USB Specification – Revision 2.0, USB

Implementers Forum. (www.usb.org)
EZ-USB FX2 Technical Reference Manual, Revision

2.1, Cypress (www.cypress.com)
ATA/ATAPI-6 Specification, Proposed ANSI

Standard (www.t13.org).
SCSI-3 Spedification (www.t10.org)

EZ-USB FX2 USB to ATA Reference Design Notes

6

Document Revision History
Revision # Date Comments
2.10 2/1/01 Updated for new board, added flowchart
2.09 12/1/01 Updated for final release.
2.0B8 8/15/01 Minor typographical and technical corrections.
2.0B7 7/1/01 Added information about unified code image.
2.0B5 5/20/01 Added DVD support info
2.0B1 3/26/01 Revised for Beta release.

Added more file descriptions
Added build instructions

2.0 11/29/00 Initial Release

	Note
	Introduction
	Reference Design Elements
	Background Information
	Mass Storage Class Specification
	Boot Support
	48 bit LBA Addressing
	Firmware Overview
	Firmware Details
	Main()
	resetATAPIDevice()
	ATAPIIdDevice()
	EZUSB_Discon()
	TD_Poll()
	ReadPIO16(), WritePIO16()
	Resets
	File Descriptions
	Building the Software
	Debugging the Software
	Old
	New

	Difference between ATAPI and IDE devices
	Serial numbers
	Hardware Notes – EZ-USB FX2 design
	Power
	References
	Document Revision History

